blueworld.tk

Just another WordPress site

Two-dimensional MoS 2 -enabled flexible rectenna for Wi-Fi-band wireless energy harvesting

  • 1.

    Fiori, G. et al. Electronics based on two-dimensional materials. Nat. Nanotechnol. 9, 768–779 (2014); erratum 9, 1063 (2014).

  • 2.

    Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012).

  • 3.

    Akinwande, D., Petrone, N. & Hone, J. Two-dimensional flexible nanoelectronics. Nat. Commun. 5, 5678 (2014).

  • 4.

    Chhowalla, M., Jena, D. & Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 1, 16052 (2016).

  • 5.

    Mak, K. F. & Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photon. 10, 216–226 (2016).

  • 6.

    Dargie, W. & Poellabauer, C. Fundamentals of Wireless Sensor Networks: Theory and Practice (John Wiley & Sons, Chichester, 2010).

  • 7.

    Jariwala, D., Sangwan, V. K., Lauhon, L. J., Marks, T. J. & Hersam, M. C. Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano 8, 1102–1120 (2014).

  • 8.

    Pozar, D. Microwave Engineering 4th edn (PHI Learning Private Limited, New Delhi, 2012).

  • 9.

    Chasin, A. et al. An integrated a-IGZO UHF energy harvester for passive RFID tags. IEEE Trans. Electron Dev. 61, 3289–3295 (2014).

  • 10.

    Chasin, A. et al. UHF IGZO Schottky diode. In Proc. 2012 International Electron Devices Meeting 12.4.1–12.4.4 (IEEE, 2012).

  • 11.

    Sani, N. et al. All-printed diode operating at 1.6 GHz. Proc. Natl Acad. Sci. USA 111, 11943–11948 (2014).

  • 12.

    Zhang, J. et al. Flexible indium–gallium–zinc–oxide Schottky diode operating beyond 2.45 GHz. Nat. Commun. 6, 7561 (2015).

  • 13.

    Tesla, N. Apparatus for utilizing effects transmitted from a distance to a receiving device through natural media. US Patent 685, 955 (1901).

  • 14.

    Strohm, K. M., Buechler, J. & Kasper, E. SIMMWIC rectennas on high-resistivity silicon and CMOS compatibility. IEEE Trans. Microw. Theory Tech. 46, 669–676 (1998).

  • 15.

    Suh, Y.-H. & Chang, K. A high-efficiency dual-frequency rectenna for 2.45- and 5.8-GHz wireless power transmission. IEEE Trans. Microw. Theory Tech. 50, 1784–1789 (2002).

  • 16.

    Sizov, F. & Rogalski, A. THz detectors. Prog. Quantum Electron. 34, 278–347 (2010).

  • 17.

    Steudel, S. et al. Ultra-high frequency rectification using organic diodes. In Proc. 2008 IEEE International Electron Devices Meeting 1–4 (IEEE, 2008).

  • 18.

    Seo, J.-H. et al. Investigation of various mechanical bending strains on characteristics of flexible monocrystalline silicon nanomembrane diodes on a plastic substrate. Microelectron. Eng. 110, 40–43 (2013).

  • 19.

    Qin, G. et al. Fabrication and characterization of flexible microwave single-crystal germanium nanomembrane diodes on a plastic substrate. IEEE Electron Device Lett. 34, 160–162 (2013).

  • 20.

    Hsu, A. et al. Large-area 2-D electronics: materials, technology, and devices. Proc. IEEE 101, 1638–1652 (2013).

  • 21.

    Lee, Y.-H. et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 24, 2320–2325 (2012).

  • 22.

    Kappera, R. et al. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 13, 1128–1134 (2014).

  • 23.

    Donchev, E. et al. The rectenna device: from theory to practice (a review). MRS Energy Sustain. 1, E1 (2014); corrigendum 1, E5 (2014).

  • 24.

    English, C. D., Shine, G., Dorgan, V. E., Saraswat, K. C. & Pop, E. Improved contacts to MoS2 transistors by ultra-high vacuum metal deposition. Nano Lett. 16, 3824–3830 (2016).

  • 25.

    Manohara, H. M., Wong, E. W., Schlecht, E., Hunt, B. D. & Siegel, P. H. Carbon nanotube Schottky diodes using Ti−Schottky and Pt−Ohmic contacts for high frequency applications. Nano Lett. 5, 1469–1474 (2005).

  • 26.

    Sze, S. M. & Ng, K. K. Physics of Semiconductor Devices. (Wiley, 2007).

  • 27.

    Cowley, A. M. & Sorensen, H. O. Quantitative comparison of solid-state microwave detectors. IEEE Trans. Microw. Theory Tech. 14, 588–602 (1966).

  • 28.

    Park, S. et al. High-frequency prospects of 2D nanomaterials for flexible nanoelectronics from baseband to sub-THz devices. In Proc. 2015 IEEE International Electron Devices Meeting 32.1.1–32.1.4 (IEEE, 2015).

  • 29.

    Cheng, R. et al. Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics. Nat. Commun. 5, 5143 (2014).

  • 30.

    Wang, H., Hsu, A., Wu, J., Kong, J. & Palacios, T. Graphene-based ambipolar RF mixers. IEEE Electron Device Lett. 31, 906–908 (2010).

  • 31.

    Guo, Y. et al. Study on the resistance distribution at the contact between molybdenum disulfide and metals. ACS Nano 8, 7771–7779 (2014).

  • 32.

    Mou, J., Xue, Q., Guo, D. & Lv, X. A THz detector chip with printed circular cavity as package and enhancement of antenna gain. IEEE Trans. Antenn. Propag. 64, 1242–1249 (2016).

  • 33.

    van Hattem, R. Maximum wifi transmission power per country. Wolph https://w.wol.ph/2015/08/28/maximum-wifi-transmission-power-country/ (2015).

  • 34.

    Grajal, J., Krozer, V., Gonzalez, E., Maldonado, F. & Gismero, J. Modeling and design aspects of millimeter-wave and submillimeter-wave Schottky diode varactor frequency multipliers. IEEE Trans. Microw. Theory Tech. 48, 700–711 (2000).

  • 35.

    Valenta, C. R. & Durgin, G. D. Harvesting wireless power: survey of energy-harvester conversion efficiency in far-field, wireless power transfer systems. IEEE Microw. Mag. 15, 108–120 (2014).

  • 36.

    Mbombolo, S. E. F. & Park, C. W. An improved detector topology for a rectenna. In Proc. 2011 IEEE MTT-S International Microwave Workshop Series on Innovative Wireless Power Transmission: Technologies, Systems, and Applications 23–26 (IEEE, 2011).

  • 37.

    Olgun, U., Chen, C. & Volakis, J. L. Investigation of rectenna array configurations for enhanced RF power harvesting. IEEE Antennas Wirel. Propag. Lett. 10, 262–265 (2011).

  • 38.

    Olgun, U., Chen, C. & Volakis, J. L. Wireless power harvesting with planar rectennas for 2.45 GHz RFIDs. In Proc. 2010 URSI International Symposium on Electromagnetic Theory 329–331 (IEEE, 2010).

  • 39.

    Wang, D. & Negra, R. Design of a rectifier for 2.45 GHz wireless power transmission. In PRIME 2012; 8th Conference on Ph.D. Research in Microelectronics & Electronics (VDE, 2012).

  • 40.

    Kim, J. & Jeong, J. Design of high efficiency rectifier at 2.45 GHz using parasitic canceling circuit. Microw. Opt. Technol. Lett. 55, 608–611 (2013).

  • 41.

    Bertolazzi, S., Brivio, J. & Kis, A. Stretching and breaking of ultrathin MoS2. ACS Nano 5, 9703–9709 (2011).

  • 42.

    Kwon, J.-Y., Lee, D.-J. & Kim, K.-B. Transparent amorphous oxide semiconductor thin film transistor. Electron. Mater. Lett. 7, 1–11 (2011).

  • 43.

    Mohammed, D. W. et al. Mechanical properties of amorphous indium–gallium–zinc oxide thin films on compliant substrates for flexible optoelectronic devices. Thin Solid Films 594, 197–204 (2015).

  • 44.

    Freund, L. B. & Suresh, S. Thin Film Materials: Stress, Defect Formation and Surface Evolution (Cambridge Univ. Press, Cambridge, 2004).

  • 45.

    Sun, J., Zhang, B. & Katz, H. E. Materials for printable, transparent, and low-voltage transistors. Adv. Funct. Mater. 21, 29–45 (2011).

  • 46.

    Shaw, J. M. & Seidler, P. F. Organic electronics: introduction. IBM J. Res. Develop. 45, 3–9 (2001).

  • 47.

    Tahk, D., Lee, H. H. & Khang, D.-Y. Elastic moduli of organic electronic materials by the buckling method. Macromolecules 42, 7079–7083 (2009).

  • 48.

    Dao, M. & Asaro, R. J. Localized deformation modes and non-Schmid effects in crystalline solids. Part II. deformation patterns. Mech. Mater. 23, 333–334 (1996).

  • 49.

    Sankaran, S. & O, K. K. Schottky diode with cutoff frequency of 400 GHz fabricated in 0.18 μm CMOS. Electron. Lett. 41, 506–508 (2005).



  • Source link

    Leave a Reply

    %d bloggers like this:
    www.000webhost.com